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Outline

Goal: incorporate smiles in Valuation Adjustments (xVAs).

Steps:

1 Introduction.

2 Our contribution.

3 SDE with state-dependent drift / diffusion.

4 Randomized Affine Diffusion (RAnD).

5 Calibration, simulation and pricing.

6 Conclusions.
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Introduction

1 Background on xVAs:

a Economic value = risk-neutral value − xVA.
b Valuation Adjustments (xVAs), e.g., CVA, DVA, FVA, MVA, KVA.
c Computational challenges.

2 Focus on xVAs for IR derivatives.

3 Common xVA modeling setup in a Monte Carlo framework:

a Use one-factor short-rate model in Affine Diffusion class.
b Analytic tractability motivates use for xVA purposes.
c Example: Hull-White one-factor model (HW1F).
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HW1F model

1 Impossible to fit to the whole market volatility surface (expiry ×
tenor × strike).

2 Time-dependent piece-wise constant volatility parameter used to
calibrate the model to a strip of ATM co-terminal swaptions.

3 Forward rate under HW1F is shifted-lognormal: there is skew but
it cannot be controlled.

4 The model does not generate volatility smile.

5 HW1F dynamics in the G1++ form:

r(t) = x(t) + b(t), dx(t) = −axx(t)dt + σx(t)dW (t).
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Smile and skew: the market
1 Volatility smile on the short end.
2 Transforms into skew over time.

Figure: USD swaption volatility surface with 10Y tenor, market data from
28/09/2022. The volatilities are shifted Black volatilities. The strike is given
as a factor times the ATM strike KATM, e.g., 1.2 means a strike of 1.2 ·KATM.
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Smile and skew: the market vs HW1F

(a) 1Y expiry, 29Y tenor. (b) 5Y expiry, 25Y tenor.

(c) 10Y expiry, 20Y tenor. (d) 25Y expiry, 5Y tenor.

Figure: USD 30Y co-terminal swaption volatility strips (02/12/2022).
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Smile and skew: xVA

1 Smile and skew typically absent from xVA calculations.

2 Challenge: find a model that captures smile and skew, but also
allows for efficient calibration and pricing.

3 Smile and skew can be relevant for xVA:

a Obvious case: derivatives that take into account smile.
b Also for linear derivatives: legacy trades that are off-market and

not primarily driven by ATM vols.
c Larger effect expected on PFE as this is a tail metric.

4 Examples in literature:

a Andreasen used a four-factor Cheyette model with local and
stochastic volatility [1].

b Quadratic Gaussian models (quadratic form for the short rate)
also allow smile control [3, Section 16.3.2].
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Our contribution

1 Find SDE with state-dependent drift / diffusion that is consistent
with the convex combination of N different HW1F models, where
one model parameter is varied.

2 This model allows to capture market smile and skew.

3 Profit from the analytic tractability of Affine Diffusion dynamics.

4 The model allows for fast and semi-analytic swaption calibration.

5 Monte Carlo pricing using regression methods.

6 Use the idea of the RAnD method to parameterize the model:
one additional degree of freedom for HW1F.
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SDE with state-dependent drift / diffusion
1 General dynamics for r(t) for which we try to find the

(potentially) state-dependent drift and diffusion:

dr(t) = µr (t, r(t))dt + ηr (t, r(t))dW (t). (1)

2 We want to find µr (t, r(t)) and ηr (t, r(t)) s.t. ∀t the density is
consistent with the convex combination of N densities of
analytically tractable models rn(t):

fr(t)(y) =
N∑

n=1

ωnfrn(t)(y), (2)

where

drn(t) = µrn(t, rn(t))dt + ηrn(t, rn(t))dW (t). (3)

3
∑N

n=1 ωn = 1 and ωn > 0 ∀n.
4 We derive µr (t, r(t)) and ηr (t, r(t)) using the Fokker-Planck eq.
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Fokker-Planck: applied to our case
We write down the FP equation for both r(t) and rn(t). Using

fr(t)(y) =
N∑

n=1

ωnfrn(t)(y), (4)

and linearity of the derivative operator we obtain:

dr(t) = µr (t, r(t))dt + ηr (t, r(t))dW (t), (5)

µr (t, y) =
N∑

n=1

µrn(t, y)Λn(t, y), (6)

η2r (t, y) =
N∑

n=1

η2rn(t, y)Λn(t, y), (7)

Λn(t, y) =
ωnfrn(t)(y)∑N
i=1 ωi fri (t)(y)

. (8)
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The rn(t) dynamics

We work with the HW1F model in the G1++ formulation, where each
rn(t) has a different mean-reversion θn:

rn(t) = xn(t) + bn(t), (9)

dxn(t) = −θnxn(t)dt + σxdW (t), (10)

bn(t) = f M(0, t)− xn(0)e
−θnt +

1

2
σ2
xBn

2(0,T ), (11)

Bn(s, t) =
1

θn

(
1− e−θn(t−s)

)
. (12)

• Constant volatility σx for ease of notation, in reality piece-wise
constant σx(t) is used.

• rn(t) ∼ N (Es [xn(t)] + bn(t),Vars (xn(t))) conditional on Fs .

• So frn(t)(y) is a normal pdf.
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The rn(t) dynamics

Writing these dynamics in the desired form

drn(t) = µrn(t, rn(t))dt + ηrn(t, rn(t))dW (t) (13)

yields

µrn(t, rn(t)) =
d f M(0, t)

d t
+ θnf

M(0, t)− θnrn(t) + Var0 (rn(t)) ,
(14)

ηrn(t, rn(t)) = σx . (15)

T. van der Zwaard (UU, Rabobank) 2nd DMFA @ UU November 24, 2023 13 / 26



The r(t) dynamics

Using these results, we have that

dr(t) = µr (t, r(t))dt + ηr (t, r(t))dW (t), (16)

µr (t, r(t)) =
N∑

n=1

[
d f M(0, t)

d t
+ θnf

M(0, t)− θnr(t) + Var0 (rn(t))
]

· Λn(t, r(t)), (17)

ηr (t, r(t)) =

√√√√ N∑
n=1

σ2
x · Λn(t, r(t)) = σx , (18)

as
∑N

n=1 Λn(t, y) = 1 ∀y .
This means that the diffusion component ηr (t, r(t)) is unchanged,
whereas the drift µr (t, r(t)) is state-dependent.
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Convex combinations of dynamics
We derived the dynamics X (t) that corresponds to the convex
combination of N different models Xn(t):

1 The resulting model is then driven by fX (t)(y):

fX (t)(y) =
N∑

n=1

ωnfXn(t)(y). (19)

2 A similar result holds for the valuation of a derivative VX (t):

VX (t) =
N∑

n=1

ωnVXn(t). (20)

3 Eq. (20) obtained for call option on equity when imposing (19)
under the T -forward measure.

4 Eq. (20) holds for non-path-dependent derivatives only.
5 For more complex derivatives, derive state-dependent (local-vol

type) dynamics as before.
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Randomized Affine Diffusion

Randomized Affine Diffusion (RAnD) method [4, 5]:

1 Take an Affine Diffusion (AD) model.

2 Pick model parameter ϑ to randomize.

3 The random variable ϑ is defined on domain Dϑ := [a, b] with
PDF fϑ(x) and CDF Fϑ(x), and realization θ, ϑ(ω) = θ, such
that the moments are finite.

4 For valuation, we use Gauss-quadrature weights {ωn, θn}Nn=1

where the nodes θn are based on Fϑ(x), see [5, Appendix A.2].
Then, for the valuation:

V (t, r(t;ϑ)) =

∫
[a,b]

V (t, r(t; θ))dFϑ(θ) ≈
N∑

n=1

ωnV (t, r(t; θn)).
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RAnD for model parametrization

1 Use the idea of the RAnD method to reduce dimensionality of
our model parameters.

2 We do not suffer from the quadrature error.

3 We work with the HW1F dynamics.

4 We choose ϑ = ax , i.e., the mean-reversion parameter.

5 Impose N
(
µϑ, σ

2
ϑ

)
as randomizer (constant over time).

6 N = 5 suitable when ϑ follows a normal (or uniform) distribution.

7 Key advantage: one additional degree of freedom w.r.t. HW1F.
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Calibration of the r(t) dynamics
1 Calibration of the rn(t) HW1F dynamics in the usual way.

2 Mean-reversion parameterized as ax ∼ N
(
µϑ, σ

2
ϑ

)
.

For each choice of µϑ and σ2
ϑ:

a Compute collocation points (Gauss-quad weights) {ωn, θn}Nn=1.
b Initialize N HW1F models with mean-reversion parameter ax = θn.

3 Use fast valuation

V (t, r(t)) =
N∑

n=1

ωnV (t, rn(t)).

4 Calibrate the parametrization of the mean-reversion
ax ∼ N

(
µϑ, σ

2
ϑ

)
according to the desired strategy:

a Fit the initial coterminal smile.
b Fit all ATM points of the vol surface.
c Fit all coterminal smiles.

5 Bootstrap calibration of piece-wise constant model volatility to
get a good ATM fit to the coterminal swaption strip.
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Calibration results

(a) Fit initial coterminal smile. (b) Fit all ATM points.

(c) Fit all coterminal smiles.

Figure: Initial coterminal smile. USD market data from 02/12/2022.
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Calibration results

(a) Fit initial coterminal smile. (b) Fit all ATM points.

(c) Fit all coterminal smiles.

Figure: Difference in ATM implied vols. USD market data from 02/12/2022.
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Simulation of the r(t) dynamics

Back to our dynamics:

dr(t) = µr (t, r(t))dt + ηr (t, r(t))dW (t), (21)

µr (t, r(t)) =
N∑

n=1

[
d f M(0, t)

d t
+ θnf

M(0, t)− θnr(t) + Var0 (rn(t))
]

· Λn(t, r(t)), (22)

ηr (t, r(t)) =

√√√√ N∑
n=1

σ2
x · Λn(t, r(t)) = σx , (23)

as
∑N

n=1 Λn(t, y) = 1 ∀y .
This means that the diffusion component ηr (t, r(t)) is unchanged,
whereas the drift µr (t, r(t)) is state-dependent.
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Simulation of the r(t) dynamics
1 Euler-Maruyama discretization always works:

r(ti+1) = r(ti ) + µr (ti , r(ti ))∆t + ηr (t, r(ti ))
√
∆tZ , (24)

where Z ∼ N (0, 1).

2 Ideally we make large time steps. Hence, we integrate dr(t) to
obtain an expression for r(t) conditional on r(s) for s < t, i.e.,

r(t) = r(s) +

∫ t

s
µr (u, r(u))du +

∫ t

s
ηr (u, r(u))dW (u). (25)

3 The integrated drift is difficult to compute:∫ t

s
µr (u, r(u))du = f M(0, t)− f M(0, s)

+

∫ t

s

N∑
n=1

[
θnf

M(0, u)− θnr(u) + Var0 (rn(u))
]
Λn(u, r(u))du.

4 Alternatively: machine learning, e.g., Seven-League scheme [6].
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Pricing under the r(t) dynamics

1 Valuation as convex combination of underlying prices only for
Europeans.

2 In general, we can use Monte Carlo with regression:

a Regression to avoid nested simulation.
b For example, we simulate r from t0 to t and at this point we want

to compute P(t,T ) = Et

[
e−

∫ T
t

r(s)ds
]
.

c For each P(t,T ) we need for pricing, it is regressed on r(t).
d For example, an n-th order polynomial can be used as regression

function, or something of exponential form.

3 These regression-based methods lend themselves naturally for
xVA calculations, also known as American Monte Carlo.
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Pricing a swaption under the r(t) dynamics
1 Swaption with 10k notional, 5y expiry, on a 5y payer swap with

annual payments.

2 Use 105 MC paths (antithetic variates turned on) and 100
simulation dates per year.

3 Polynomial regression of degree 4.

Value Imp.vol

HW1F: analytic 328.63814 0.22186

Convex comb: analytic 580.31577 0.40080

Convex comb: MC regressed ZCB 582.41497 0.40235

RAnD dynamics: MC regressed ZCB 581.20828 0.40146

Abs diff 1.20669 8.92e-04

Rel diff 2.08e-03

Table: Results for all coterminal smiles calibration. Absolute and relative
differences are between convex combination and RAnD dynamics values
using the MC with regressed ZCB. RAnD 95% conf.int.: (578.96, 583.46).
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Conclusions

1 Find SDE with state-dependent drift / diffusion that is consistent
with the convex combination of N different HW1F models, where
one model parameter is varied.

2 This model allows to capture market smile and skew.

3 Profit from the analytic tractability of Affine Diffusion dynamics.

4 The model allows for fast and semi-analytic swaption calibration.

5 Monte Carlo pricing using regression methods.

6 Use the idea of the RAnD method to parameterize the model:
one additional degree of freedom for HW1F.
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