

Wrong-Way Risk in Funding Valuation Adjustments Utrecht University, Rabobank

T. van der Zwaard ICCF2022, 09/06/2022

Acknowledgements & Disclaimer

Joint work with Lech Grzelak and Kees Oosterlee [?].

Acknowledgements

This work has been financially supported by Rabobank.

Disclaimer

The views expressed in this work are the personal views of the authors and do not necessarily reflect the views or policies of their current or past employers.

Outline

Goal: efficient Wrong-Way Risk (WWR) calculation for FVA.

Steps:

- 1 Introduce FVA and WWR;
- Our contribution;
- 8 FVA equation;
- 4 Approximating FVA WWR;
- S Numerical results;
- 6 Conclusions.

FVA

- Suppose corporate C has a floating rate loan from bank I.
- To hedge IR risk, C often purchases an uncollateralized IR swap from *I*.
- *I* hedges in the interbank market, with perfect collateralization.
- I needs to fund itself in the money market at the cost of a funding spread $s_b(t)$ over r(t).

FVA

- Valuation Adjustments (xVAs): CVA, DVA, FVA, MVA, KVA.
 Economic value = risk-neutral value xVA.
- FVA is the funding cost of eliminating market risk on non-perfectly collateralized deals.
- FVA can be split into FBA and FCA.

FVA WWR

- WWR occurs when "exposure to a counterparty is adversely correlated with the credit quality of that counterparty" ¹.
- FVA WWR: increase in funding risk as a consequence of increased market risk.
- Adverse relationship between IR and funding spreads.
- In our previous example of receiver swaps:
 - IR goes down.
 - Exposure goes up.
 - FVA goes up.
 - More negative funding spread sensitivity.
 - In addition, funding spreads will go up due to adverse relationship between IR and funding spreads.
- This happened during the March 2020 financial distress.
- FVA WWR difficult to hedge.

Our contribution

- Demonstrate relevance of WWR in FVA modelling.
- Understand how various modelling choices affect FVA WWR.
- Propose efficient approximation of FVA WWR.
- Avoid simulating extra (correlated) dynamics for credit and funding spreads.

FVA equation

- Asymmetric funding spreads: $s_b(t) > 0$ and $s_l(t) = 0$, so FBA(t) = 0, hence FVA(t) = FCA(t).
- Choose correlated SDEs for processes r(t), $\lambda_I(t)$ and $\lambda_C(t)$ $\Rightarrow \rho_{r,I} \& \rho_{r,C} \& \rho_{I,C}$.

$$\begin{aligned} \mathsf{FVA}(t) &= \mathbb{E}\left[\int_{u=t}^{T \wedge \tau_l \wedge \tau_C} \mathrm{e}^{-\int_t^u r(v) \mathrm{d}v} s_b(u) \left(V(u)\right)^+ \mathrm{d}u \middle| \mathcal{G}(t) \right] \\ &= \int_{u=t}^T \mathbb{E}\left[\mathrm{e}^{-\int_t^u \lambda_l(v) + \lambda_C(v) \mathrm{d}v} \mathrm{e}^{-\int_t^u r(v) \mathrm{d}v} s_b(u) \left(V(u)\right)^+ \middle| \mathcal{F}(t) \right] \mathrm{d}u \\ &=: \int_{u=t}^T \mathsf{EPE}(t; u) \mathrm{d}u, \end{aligned}$$

where we assumed conditional independence of defaults ($\rho_{I,C} = 0$) and no defaults before *t*.

FVA equation - exposure

Split EPE(t; u) as follows:

$$\mathsf{EPE}(t; u) = \mathsf{EPE}^{\perp}(t; u) + \mathsf{EPE}^{\mathsf{WWR}}(t; u).$$

- Independent exposure $EPE^{\perp}(t; u)$ is taken from existing xVA engine where WWR is absent.
- WWR exposure $EPE^{WWR}(t; u)$ is the quantity we approximate.

Similar split for FVA:

$$\mathsf{FVA}(t) = \int_{t}^{T} \mathsf{EPE}^{\perp}(t; u) \mathrm{d}u + \int_{t}^{T} \mathsf{EPE}^{\mathsf{WWR}}(t; u) \mathrm{d}u$$
$$=: \mathsf{FVA}^{\perp}(t) + \mathsf{FVA}^{\mathsf{WWR}}(t).$$

FVA equation - credit adjustment effect

Including τ_{I} and/or τ_{C} in the FVA definition results in a credit adjustment effect:

$$\begin{aligned} \mathsf{FVA}(t) &= \mathbb{E}\left[\int_{u=t}^{T\wedge\tau_{f}\wedge\tau_{C}} \mathrm{e}^{-\int_{t}^{u}r(v)\mathrm{d}v}s_{b}(u)\left(V(u)\right)^{+}\mathrm{d}u\middle|\mathcal{G}(t)\right] \\ &= \int_{u=t}^{T} \mathbb{E}\left[\mathrm{e}^{-\int_{t}^{u}\lambda_{I}(v)+\lambda_{C}(v)\mathrm{d}v}\mathrm{e}^{-\int_{t}^{u}r(v)\mathrm{d}v}s_{b}(u)\left(V(u)\right)^{+}\middle|\mathcal{F}(t)\right]\mathrm{d}u. \end{aligned}$$

In case all quantities are independent:

$$\begin{split} \mathsf{EPE}(t; u) \\ &= \mathsf{EPE}^{\perp}(t; u) \\ &= \mathbb{E}_t \left[\mathrm{e}^{-\int_t^u \lambda_I(v) + \lambda_C(v) \mathrm{d}v} \mathrm{e}^{-\int_t^u r(v) \mathrm{d}v} s_b(u) \left(V(u) \right)^+ \right] \\ &= \mathbb{E}_t \left[\mathrm{e}^{-\int_t^u \lambda_I(v) \mathrm{d}v} \right] \cdot \mathbb{E}_t \left[\mathrm{e}^{-\int_t^u \lambda_C(v) \mathrm{d}v} \right] \cdot \mathbb{E}_t \left[\mathrm{s}_b(u) \right] \cdot \mathbb{E}_t \left[\mathrm{e}^{-\int_t^u r(v) \mathrm{d}v} \left(V(u) \right)^+ \right] \\ &= P_I(t, u) \cdot P_C(t, u) \cdot \mathbb{E}_t \left[\mathrm{s}_b(u) \right] \cdot \mathbb{E} \left[\mathrm{e}^{-\int_t^u r(v) \mathrm{d}v} \left(V(u) \right)^+ \right| \mathcal{F}(t) \right]. \end{split}$$

FVA equation - credit adjustment effect

The FVA^{\perp}(*t*) reduction can be substantial, illustrated by a 74 basis point reduction in this example, which is approximately a 70% decrease:

	τ_I excl.	τ_I incl.
τ_C excl.	107.64	95.31
τ_C incl.	36.10	33.63

Table: FVA^{\perp}(*t*) for the various choices of including/excluding τ_I and/or τ_C .

FVA equation - relevance of WWR

The WWR/RWR effects are non-negligible, as ratio $\frac{FVA(t)}{FVA^{\perp}(t)}$ is significantly different from 1 for non-zero correlations.

Figure: Correlation parameters effect for a receiver swap.

Model details - SDEs

Dynamics fit in the following generic setup:

$$\overline{z}(u) = x_z(u) + b_z(u),$$

$$x_z(u) = \mu_z(t, u) + y_z(t, u),$$

$$\int_t^u x_z(v) dv = M_z(t, u) + Y_z(t, u),$$

where

- $\overline{z} \in \{r, \lambda_I, \lambda_C\}$ and $z \in \{r, I, C\}$.
- $b_z(u)$, $\mu_z(t, u)$ and $M_z(t, u)$ are deterministic quantities.
- $y_z(t, u)$ and $Y_z(t, u)$ are stochastic processes, with $\mathbb{E}_t [y_z(t, u)] = \mathbb{E}_t [Y_z(t, u)] = 0.$

Model details - funding spread

Credit-based funding spread, taking into account $\lambda_l(u)$ and liquidity adjustment $\ell(u)$:

$$s_{b}(u) = LGD_{I} \lambda_{I}(u) + \ell(u)$$

= LGD_{I} [x_{I}(u) + b_{I}(u)] + \ell(u)
= LGD_{I} [\mu_{I}(t, u) + b_{I}(u)] + \ell(u) + LGD_{I} y_{I}(t, u)
=: $\mu_{S}(t, u) + LGD_{I} y_{I}(t, u).$

WWR is introduced through the stochastic borrowing spread $s_b(u)$.

Model details - exposures

Now

$$\begin{split} \mathsf{EPE}^{\perp}(t;u) \\ &= \mathsf{P}_{l}(t,u)\mathsf{P}_{C}(t,u)\mu_{S}(t,u)\mathbb{E}_{t}\left[\mathrm{e}^{-\int_{t}^{u}r(v)\mathrm{d}v}\left(V(u)\right)^{+}\right] \\ &+ \mathsf{LGD}_{l}\,\mathbb{E}_{t}\left[\mathrm{e}^{-\int_{t}^{u}\lambda_{l}(v)+\lambda_{C}(v)\mathrm{d}v}y_{l}(t,u)\right]\mathbb{E}_{t}\left[\mathrm{e}^{-\int_{t}^{u}r(v)\mathrm{d}v}\left(V(u)\right)^{+}\right], \end{split}$$

and

$$\mathsf{EPE}^{\mathsf{WWR}}(t; u) = \mathbb{E}_t \left[\left(\mathrm{e}^{-\int_t^u r(v) \mathrm{d}v} \left(V(u) \right)^+ - \mathbb{E}_t \left[\mathrm{e}^{-\int_t^u r(v) \mathrm{d}v} \left(V(u) \right)^+ \right] \right) \mathrm{e}^{-\int_t^u \lambda_I(v) + \lambda_C(v) \mathrm{d}v} s_b(u) \right]$$

Model details - additional notation

• Some notation, with $\overline{z} \in \{r, \lambda_I, \lambda_C\}$ and $z \in \{r, I, C\}$:

$$\begin{split} \mathrm{e}^{-\int_t^u \overline{z}(v) \mathrm{d}v} &= H_z(t, u) \mathrm{e}^{-Y_z(t, u)} \\ H_{z_1, \dots, z_n}(t, u) &:= H_{z_1}(t, u) \cdots H_{z_n}(t, u). \end{split}$$

• Denote Taylor series expansions of e^{-x} as

$$T(x) := \sum_{j=0}^{\infty} \frac{(-x)^j}{j!}, \ T_n^m(x) := \sum_{j=n}^m \frac{(-x)^j}{j!},$$

such that we can write $T(x) = T_0^n(x) + T_{n+1}^{\infty}(x)$.

Model details - FVA WWR exposure

Now apply the Taylor expansions:

$$\begin{split} \mathbf{e}^{-\int_{t}^{u} r(v) \mathrm{d}v} &= H_{r}(t, u) T(Y_{r}(t, u)), \\ \mathbf{e}^{-\int_{t}^{u} \lambda_{l}(v) + \lambda_{C}(v) \mathrm{d}v} &= H_{l,C}(t, u) \left[T_{0}^{1}(Y_{l}(t, u) + Y_{C}(t, u)) + T_{2}^{\infty}(Y_{l}(t, u) + Y_{C}(t, u)) \right]. \end{split}$$

Using the Taylor expansions and our model assumptions:

$$\begin{split} \mathsf{EPE}^{\mathsf{WWR}}(t; u) \\ &= H_{r,l,\mathcal{C}}(t, u) \mu_{\mathcal{S}}(t, u) \mathbb{E}_{t} \left[T_{0}^{n_{j}}(Y_{r}(t, u))(-Y_{l}(t, u) - Y_{\mathcal{C}}(t, u))(V(u))^{+} \right] \\ &+ \mathsf{LGD}_{l} H_{r,l,\mathcal{C}}(t, u) \mathbb{E}_{t} \left[T_{0}^{n_{j}}(Y_{r}(t, u))y_{l}(t, u)(1 - Y_{l}(t, u) - Y_{\mathcal{C}}(t, u))(V(u))^{+} \right] \\ &+ \mathsf{LGD}_{l} H_{l,\mathcal{C}}(t, u) \mathbb{E}_{t} \left[Y_{l}(t, u)y_{l}(t, u) \right] \mathbb{E}_{t} \left[\mathrm{e}^{-\int_{t}^{u} r(v) \mathrm{d}v} \left(V(u) \right)^{+} \right] \\ &+ \varepsilon^{\mathsf{WWR}, 1}, \end{split}$$

where $\varepsilon^{\rm WWR,1}$ contains scaled truncation errors.

Model details - idea of approximation

- W.I.o.g. take $y_r(t, u)$ normally distributed (HW1F).
- IR swap payoff V(u) can be written in terms of $y_r(t, u)$.
- Through a Jamshidian-like argument, $(V(u))^+$ is also expressed in terms of $y_r(t, u)$.
- Approximate $y_z(t, u)$ and $Y_z(t, u)$, $z \in \{r, I, C\}$, in terms of $y_r(t, u)$:

$$Y_{z}(t, u) \approx \rho_{rz} \sqrt{\frac{\mathbb{V}ar_{t}(Y_{z}(t, u))}{\mathbb{V}ar_{t}(y_{r}(t, u))}} y_{r}(t, u)$$
$$=: \rho_{r, z} \Sigma_{t}(Y_{z}(t, u)) y_{r}(t, u)$$

Model details - WWR exposure approximation

$$\begin{split} \gamma(t, u) &:= \rho_{r,l} \Sigma(y_l(t, u)), \ \alpha(t, u) := - \left[\rho_{r,l} \Sigma(Y_l(t, u)) + \rho_{r,c} \Sigma(Y_c(t, u))\right], \\ \nu(t, u) &:= \gamma(t, u) \alpha(t, u), \ \beta_j(t, u) := \frac{(-\Sigma(Y_r(t, u)))^j}{j!}, \end{split}$$

Approximate $EPE^{WWR}(t; u)$ as follows. $EPE^{WWR}(t; u)$

$$= H_{r,I,C}(t,u) \left(\mu_{S}(t,u)\alpha(t,u) + \mathsf{LGD}_{I}\gamma(t,u) \right) \sum_{j=0}^{n_{j}} \beta_{j}(t,u)\mathbb{E}_{t} \left[y_{r}^{j+1}(t,u) \left(V(u) \right)^{+} \right]$$
$$+ \mathsf{LGD}_{I} H_{r,I,C}(t,u)\nu(t,u) \sum_{j=0}^{n_{j}} \beta_{j}(t,u)\mathbb{E}_{t} \left[y_{r}^{j+2}(t,u) \left(V(u) \right)^{+} \right]$$
$$+ \mathsf{LGD}_{I} H_{I,C}(t,u)\mathbb{E}_{t} \left[Y_{I}(t,u)y_{I}(t,u) \right] \mathbb{E}_{t} \left[e^{-\int_{t}^{u} r(v)dv} \left(V(u) \right)^{+} \right] + \varepsilon^{\mathsf{WWR},2}.$$
where $\varepsilon^{\mathsf{WWR},2} := \varepsilon^{\mathsf{WWR},1} + \varepsilon_{\mathsf{IV}}$ s.t. equality holds.

Recognize WWR and RWR.

Model details - WWR exposure approximation

• Until now, no assumptions have been made about product V. Write $\mathbb{E}_t \left[y_r^l(t, u) \left(V(u) \right)^+ \right]$ as a function of $y_r(t, u)$:

$$\mathbb{E}_t\left[y_r'(t,u)\left(V(u)\right)^+\right]=f\left(y_r(t,u)\right)+\varepsilon_v.$$

Product-level truncation error ε_v manifests itself after the application of the Gaussian approximation.

Model details - approximation error

The approximation is a direct result of omitting overall error $\varepsilon^{\text{WWR},3} := \varepsilon^{\text{WWR},1} + \varepsilon_{\text{IV}} + \varepsilon_{\text{V}}$, where:

- $\varepsilon^{WWR,1}$ is a truncation error;
- ε_{IV} is the Gaussian approximation error;
- ε_v is the product-level truncation error.

Numerical results - exposure profile

Example for IR swap under HW1F for IR and CIR++ for credit processes.

Figure: ITM receiver swap, N = 10000, EUR overnight yield curve, high credit rating for *I*, low credit rating for *C*, τ_I excluded, τ_C excluded.

Numerical results - WWR exposure

Figure: ITM receiver swap, N = 10000, EUR overnight yield curve, high credit rating for *I*, low credit rating for *C*, τ_I excluded, τ_C excluded.

Numerical results - FVA numbers

	FVA(t)	$FVA^{WWR}(t)$	WWR %	WWR runtime (sec)
Analytic (no WWR)	193.3481	0.0000	0.0000	0.00
Monte Carlo	217.8058	24.4577	12.6496	5.97
Approximation	221.6997	28.3516	14.6635	0.25

Table: ITM receiver swap, N = 10000, EUR overnight yield curve, high credit rating for *I*, low credit rating for *C*, τ_I excluded, τ_C excluded.

Conclusions

Conclusions

- 1 We demonstrated the relevance of WWR in FVA calculations.
- 2 We understand impact of various modelling choices.
- **3** We propose an efficient approximation:
 - a) The approximation does not affect the no-WWR valuation.
 - **b** Build on top of existing xVA infrastructure, no extra simulation.
 - Efficient method.
- Example for IR swap under HW1F for IR and CIR++ for credit processes.
- **5** Extendable to other products and asset classes.

Wrong-Way Risk in Funding Valuation Adjustments Utrecht University, Rabobank

T. van der Zwaard ICCF2022, 09/06/2022

